Synaptic and cellular properties of the feedforward inhibitory circuit within the input layer of the cerebellar cortex.

نویسندگان

  • Roby T Kanichay
  • R Angus Silver
چکیده

Precise representation of the timing of sensory stimuli is essential for rapid motor coordination, a core function of the cerebellum. Feedforward inhibition has been implicated in precise temporal signaling in several regions of the brain, but little is known about this type of inhibitory circuit within the input layer of the cerebellar cortex. We investigated the synaptic properties of feedforward inhibition at near physiological temperatures (35 degrees C) in rat cerebellar slices. We establish that the previously uncharacterized mossy fiber-Golgi cell-granule cell pathway can act as a functional feedforward inhibitory circuit. The synchronous activation of four mossy fibers, releasing a total of six quanta onto a Golgi cell, can reset spontaneous Golgi cell firing with high temporal precision (200 mus). However, only modest increases in Golgi cell firing rate were observed during trains of high-frequency mossy fiber stimulation. This decoupling of Golgi cell activity from mossy fiber firing rate was attributable to a strong afterhyperpolarization after each action potential, preventing mossy fiber-Golgi cell signaling for approximately 50 ms. Feedforward excitation of Golgi cells induced a temporally precise inhibitory conductance in granule cells that curtailed the excitatory action of the mossy fiber EPSC. The synaptic and cellular properties of this feedforward circuit appear tuned to trigger a fast inhibitory conductance in granule cells at the onset of stimuli that produce intense bursts of activity in multiple mossy fibers, thereby conserving the temporal precision of the initial granule cell response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern-dependent, simultaneous plasticity differentially transforms the input-output relationship of a feedforward circuit.

Memories are believed to be encoded by changes in the synaptic connections between neurons. Although many forms of synaptic plasticity have been identified, it remains unknown how such changes affect local circuits. Feedforward inhibitory networks are a common type of local circuitry and occur when principal neurons and their afferent inhibitory interneurons receive the same input. Using slices...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Preceding Inhibition Silences Layer 6 Neurons in Auditory Cortex

A canonical feedforward circuit is proposed to underlie sensory cortical responses with balanced excitation and inhibition in layer 4 (L4). However, in another input layer, L6, sensory responses and the underlying synaptic circuits remain largely unclear. Here, cell-attached recordings in rat primary auditory cortex revealed that for the majority of L6 excitatory neurons, tonal stimuli did not ...

متن کامل

Neurobiology of Disease Impaired Feedforward Inhibition of the Thalamocortical Projection in Epileptic Ca Channel Mutant Mice, tottering

The tottering (tg) mice have a mutation in the CaV2.1 (P/Q-type) voltage-dependent Ca 2 channel 12.1 subunit gene. tg mice show not only cerebellar ataxia but also absence epilepsy, which begins at 3 weeks of age and persists throughout life. Similarities in EEG and sensitivity to antiepileptic drugs suggest that tg mice are a good model for human absence epilepsy. Although imbalance between ex...

متن کامل

Non-synaptic signaling from cerebellar climbing fibers modulates Golgi cell activity

Golgi cells are the principal inhibitory neurons at the input stage of the cerebellum, providing feedforward and feedback inhibition through mossy fiber and parallel fiber synapses. In vivo studies have shown that Golgi cell activity is regulated by climbing fiber stimulation, yet there is little functional or anatomical evidence for synapses between climbing fibers and Golgi cells. Here, we sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 36  شماره 

صفحات  -

تاریخ انتشار 2008